61 research outputs found

    Assessing Hardware Security Threats Posed by Hardware Trojans in Power Electronics

    Get PDF
    This study investigates the threat of hardware Trojans (HTs) in power electronics applications, a rising concern due to the growing demand for cost-effective embedded solutions in power systems. With the supply chain for electronic hardware devices expanding globally, particularly to low-cost foundries in foreign locations, there is an increasing risk of HT attacks. While there has been extensive research on HTs in computer applications, little consideration has been given to their threat in power electronics. This study demonstrates the effectiveness of a power electronics HT by implementing a novel HT design into a gate drive circuit. Additionally, the research proposes several HT designs that exploit factors unique to power circuits, such as high power delivery and analog circuitry in order to illustrate the distinct attack space. The research highlights the need for enhanced detection, protection, and prevention methods in power electronics applications and offers a roadmap for future studies to develop more effective countermeasures and algorithms to mitigate the risks of HT attacks in power electronics

    Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny

    No full text
    Juveniles of a number of corals with horizontal transmission of dinoflagellate endosymbionts naturally acquire and maintain Symbiodinium types that differ from those found in adult populations. However, the duration of this early period of symbiont flexibility and successional changes leading to dominance by the characteristic adult (homologous) type are unknown. To document natural succession of Symbiodinium types within juvenile corals, we monitored Symbiodinium communities in juveniles of Acropora tenuis and Acropora millepora for 3.5 years. Juveniles originating from one of three reef populations, characterized by differing adult coral-Symbiodinium associations, were raised in a common environment. In four out of five cases, juveniles became dominated initially by a nonhomologous adult type. Changes in Symbiodinium communities associated with A. tenuis juveniles led to the establishment of the adult homologous association at ∼3.5 years of age. These changes were not linked to the onset of reproductive maturity, but may be linked to micro-environmental changes associated with vertical growth of juvenile corals. We hypothesize that fine-tuning of specificity mechanisms takes place during ontogeny in A. tenuis, leading to the eventual establishment of the adult homologous association. However, Symbiodinium communities in A. millepora juveniles did not change significantly over the 3.5 years, potentially reflecting (i) lack of specificity, (ii) more than a 3.5-year delay in the onset of specificity, or (iii) lack of availability of the adult Symbiodinium type. This study demonstrates that juvenile corals may survive for extended periods of time with nonhomologous Symbiodinium types and that closely related species of Acropora differ in the timing of the onset of specificity for algal symbionts

    Classical and novel psychoactive substances: Rethinking drug misuse from an evolutionary psychiatric perspective

    No full text
    In this article, ontogenetic and phylogenetic causes of drug abuse and links to human emotional development are considered. Some evolutionary perspectives (e.g. that under certain conditions, consumption of otherwise toxic alkaloids may confer both physical and cultural advantages) are reviewed. As described in the ‘mismatch theory’, the capacity of the human genome to evolve defences against toxins has been outstripped by the pace of cultural change and technological development, such as purposeful fermentation of alcohol and more recently distillation of alcohol; purification and chemical manipulation of plant alkaloids; and the engineering of entirely novel psychoactive substances (NPS). The functions of the neurobiological substrates that mediate substance misuse and dependence are reviewed. Reasons are given why NPSs present greater cause for concern than plant‐derived substances of abuse. We argue that evolutionary biology provides an important orientation for the research agenda in substance misuse
    corecore